Uncertainty quantification of high-dimensional complex systems by multiplicative polynomial dimensional decompositions

نویسندگان

  • Vaibhav Yadav
  • Sharif Rahman
چکیده

The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods for solving high-dimensional stochastic problems. When a stochastic response is dominantly of multiplicative nature, the standard PDD approximation, predicated on additive function decomposition, may not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent this problem, two multiplicative versions of PDD, referred to as factorized PDD and logarithmic PDD, were developed. Both versions involve a hierarchical, multiplicative decomposition of a multivariate function, a broad range of orthonormal polynomial bases for Fourier-polynomial expansions of component functions, and a dimension-reduction or sampling technique for estimating the expansion coefficients. Three numerical problems involving mathematical functions or uncertain dynamic systems were solved to corroborate how and when a multiplicative PDD is more efficient or accurate than the additive PDD. The results show that indeed, both the factorized and logarithmic PDD approximations can effectively exploit the hidden multiplicative structure of a stochastic response when it exists. Since a multiplicative PDD recycles the same component functions of the additive PDD, no additional cost is incurred. Finally, the random eigensolutions of a sport utility vehicle comprising 40 random variables were evaluated, demonstrating the ability of the new methods to solve industrial-scale problems. Copyright © 2013 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Polynomial Dimensional Decompositions for Uncertainty Quantification in High Dimensions

The main theme of this paper is intelligently derived truncation strategies for polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response function commonly encountered in engineering and applied sciences. The truncations exploit global sensitivity analysis for defining the relevant pruning criteria, resulting in two new adaptive-sparse versions of PDD: (1) a fully ada...

متن کامل

Uncertainty Quantification by Alternative Decompositions of Multivariate Functions

This article advocates factorized and hybrid dimensional decompositions (FDD/HDD), as alternatives to analysis-of-variance dimensional decomposition (ADD), for second-moment statistical analysis of multivariate functions. New formulas revealing the relationships between component functions of FDD and ADD are proposed. While ADD or FDD is relevant when a function is strongly additive or strongly...

متن کامل

Uncertainty quantification for integrated circuits and microelectrornechanical systems

Uncertainty quantification has become an important task and an emerging topic in many engineering fields. Uncertainties can be caused by many factors, including inaccurate component models, the stochastic nature of some design parameters, external environmental fluctuations (e.g., temperature variation), measurement noise, and so forth. In order to enable robust engineering design and optimal d...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013